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What will be discussed today

● Litte excursus on why symbol frequency is 
important

● NLP – Semantic 
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Recap of previous lesson

● We understood that the frequency of a term 
carries information about it

● TF-IDF is based on this very idea as well as the 
concept of stop-words

● But is there some real world evidence of this 
value?
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Introducing ciphers

Ciphers, also called encryption algorithms, are 
systems for encrypting and decrypting data. A 
cipher converts the original message, called 
plaintext, into ciphertext using a key to 
determine how it is done.
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Caesar Cipher

● One of the earliest known ciphers
● Also known as ROTX, where X is the number of 

places a letter is shifted (e.g., ROT13)
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Caesar Cipher

● The main problem with this approach is that the 
secret key is not big (same size of the 
language alphabet)

● In what is called a white box scenario, this 
algorithm is weak to brute force attacks

● What about black box?
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Caesar Cipher

● Even in this case, there is not a lot to do: the 
algorithms perfectly preserves the frequency of 
the letters in a used language

● Through frequency analysis it is possible to 
clearly see that this cipher has been employed 
and retrieve the key to obtain the plaintext
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Caesar Cipher
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Vigenère Cipher



  10

Vigenère Cipher
● The idea to break it similar to Caesar but with one more step: it is necessary to retrieve the length 

of the key 
● This can be done by retrieving repeated sequences in the ciphertext, since, if the repetition is 

smaller than the secret key, repeated sequences in the ciphertext correspond to repeated 
sequences in the plain text

● One way to automate this procedure is the following:
– Create letter groups of different sizes, these sizes are guess of the actual keysize
– For each size, measure the syntatic distance between some of the groups (Hamming or Edit, or Hamming 

using bytes)
● Once the keysize is known, we simply return to the case of multiple Caesar ciphers: group the 

symbols that have been shifted by the same letter, check their frequency and retrieve the actual 
letter; alternatively, brute force the single letter of the key and check that the obtained plaintext 
group has the letter frequency of English
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Classify if a piece of text is English

● ETAOIN SHRDLU: it is the approximate order of frequency of the 
12 most commonly used letters in the English language

● In the past, it appeared on discarded lines of an articles, since 
the letters on type-casting machine keyboards were arranged by 
descending letter frequency to speed up the mechanical 
operation of the machine

● If used to distinguish between plaintext and ciphertext, also the 
number of spaces is a great indicator of text that is actually 
written in English and not random bytes
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Introducing XOR ciphers
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Mapping between XOR and letters

● Caesar cipher: Single-byte XOR
– 1 Byte is used to XOR each Byte in the plaintext

● Vigenère cipher: Repeating-key XOR
– A sequence of <KEYSIZE> Bytes is used to XOR 

<KEYSIZE> Bytes of plaintext at each iteration 
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Even XOR can be broken

● Caesar cipher: Single-byte XOR
– Brute force can be used: just try all the 256 possible Bytes
– End the brute force procedure when something is English (use 

ETAOIN SHRDLU)
● Vigenère cipher: Repeating-key XOR

– Find the KEYSIZE using the Hamming distance of Bytes
● Break each Byte in the secret key like it is a Single-Byte XOR 

(ETAOIN SHRDLU)
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Back to the main track: NLP

● All the exposed techniques do not take into account the 
semantic aspects of a term

● For this kind of approaches the sentences
– The apple is red
– The carpet is covered in red stains 

are more similar than
– The cup is full of orange juice
– The glass is filled with a liquid made of oranges
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The basics: Word Embeddings

● Word embeddings: a technique where individual words are 
transformed into a numerical representation of the word (a vector)

● The vector of a word tries to capture characteristics of that term, 
such as definition and context

● BoW is a Word Embedding technique, but with several limitations:
– Does not convey actual information about the context
– Becomes larger depending on the size of the analyzed corpus of text
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Word2Vec

● Proposed in Efficient Estimation of Word 
Representations in Vector Space, 2013 by a research 
group of Google

● Goal of the paper: to introduce techniques that can be 
used for learning high-quality word vectors from huge data 
sets with billions of words

● General idea: based on a word occurrences in the text, it 
is possible to estimate its meaning
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Word2Vec: visual representation
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Word2Vec: architecture

● Word2Vec has two possible implementations (both 
are neural networks):
– Continuous Bag of Words (CBOW): the objective of 

this model is to predict the probability of a word 
appearing given the context

– Continuous Skip-Gram Model: the objective of this 
model is to predict a context given the position of a word 
in a sentence



  20

Word2Vec: CBoW
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Word2Vec: CBoW

● Input layer: multiple 1-hot vectors where the 1 corresponds to 
the word in our text corpus that occupies the position 
corresponding to the vector

● Output layer: 1-hot vector where the 1 corresponds to the 
word in our text corpus for which we are learning the word 
embeddings

● Hidden layer: vector of weights from the context. It is what we 
are trying to learn and what will be actually stored as a vector 
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Word2Vec: Continuous Skip-Gram
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Word2Vec: Continuous Skip-Gram

● Input layer: 1-hot vector where the 1 corresponds to the word 
in our text corpus for which we are learning the word 
embeddings

● Output layer: multiple 1-hot vectors where the 1 corresponds 
to the word in our text corpus that occupies the position 
corresponding to the vector

● Hidden layer: vector of weights from the context. It is what we 
are trying to learn and what will be actually stored as a vector 
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Word2Vec: the right terminology

● These kind of neural networks is usally referred as 
Autoencoders

● Their objective is to try to learn a compressed representation 
of an input

● Usually the hidden layer of a neural networks have a larger 
dimension compared to the input layer

● As seen for the two previous architectures, this is not the case 
for autoencoders 
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Word2Vec: advantages

● Both previously mentioned problem have been solved:
– It is not necessary to store the entire text corpus and obtain 

only 1-hot vectors → only the hidden layers are now necessary
– The vectors are able to capture part of the semantics of a term
– Once a term has been encoded through word embeddings, it is 

possible to do any operation on it (e.g., feed it into classifiers, 
check synonyms, check for equality...)
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Word2Vec: which is better

● The original paper reports the following:
– Skip-Gram works well with small datasets, and can 

better represent less frequent words
– CBOW is found to train faster than Skip-Gram, and 

can better represent more frequent words
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Word2Vec: which is better

● The original paper reports the following:
– Skip-Gram works well with small datasets, and can 

better represent less frequent words
– CBOW is found to train faster than Skip-Gram, and 

can better represent more frequent words
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Word2Vec: evaluate similarity

● The most simple method to evaluate the 
similarity between word embeddings is Cosine 
similarity
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Word2Vec: limitations

● A word to be evaluated must be in the training 
dataset → rare words may be unknown to the 
model

● Polysemy: a word may have multiple meanings 
based on the context (should correspond to 
multiple vectors at the same time)
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Word2Vec: solutions

● fastText: is able to handle out of vocabulary 
terms, since it is based on n-grams instead of 
full words

● ELMo: takes into account the whole sentence to 
produce the embedding at runtime → but this IS 
NOT WORD EMBEDDING 
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Introducing Sentence Embeddings

● Usually, the meaning of an entire sentence can not 
be expressed through a single word

● A naive way to obtain sentence embeddings from 
word embeddings would be to sum or average each 
of the components in the phrase

● This, in the space of the word embeddings, simply 
summarize the entire sentence as a single word
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Existing models for Sentence Embeddings

● ELMo: learns word embeddings on the fly and 
based on them generates sentence embeddings

● InferSent: word embeddings are not used, what is 
produced in directly the sentence embeddings

● Sentence-BERT: state of the art model, but very 
big and very slow (65 hours for 10,000 sentences)
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The final push: language barriers

● Usually, both word embeddings and sentence 
embeddings are trained on a text corpus of a 
single language

● Using embeddings of a different language 
would be of no use (same word but context 
never seen)
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The final push: possible solutions

● Naive: train only one language, translate all the languages into the 
central one and use its embeddings

● Align different spaces: some terms are general and easy to 
translate (animale→ animal, linguaggio→ language). Learning how 
to align these couples of vectors should leadt to the alignment of 
the entire space of the embeddings

● Both of these methos are not able to handle expression that are 
meaningful only for a specific language and lead to bad 
translations: Once in a blue moon → Una volta in una luna blu
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The final push: state-of-the-art models

● These two methods are able to learn language 
agnostic embeddings through parallel 
sentences provided in the training set:
– LASER: Language-Agnostic Sentence 

Representations
– m-USE: Multilingual Universal Sentence Encoder
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