

ADVANCED DATA MANAGEMENT

Gianluca Oldani – Tutoring 6

 2

What will be discussed today

● Litte excursus on why symbol frequency is
important

● NLP – Semantic

 3

Recap of previous lesson

● We understood that the frequency of a term
carries information about it

● TF-IDF is based on this very idea as well as the
concept of stop-words

● But is there some real world evidence of this
value?

 4

Introducing ciphers

Ciphers, also called encryption algorithms, are
systems for encrypting and decrypting data. A
cipher converts the original message, called
plaintext, into ciphertext using a key to
determine how it is done.

 5

Caesar Cipher

● One of the earliest known ciphers
● Also known as ROTX, where X is the number of

places a letter is shifted (e.g., ROT13)

 6

Caesar Cipher

● The main problem with this approach is that the
secret key is not big (same size of the
language alphabet)

● In what is called a white box scenario, this
algorithm is weak to brute force attacks

● What about black box?

 7

Caesar Cipher

● Even in this case, there is not a lot to do: the
algorithms perfectly preserves the frequency of
the letters in a used language

● Through frequency analysis it is possible to
clearly see that this cipher has been employed
and retrieve the key to obtain the plaintext

 8

Caesar Cipher

 9

Vigenère Cipher

 10

Vigenère Cipher
● The idea to break it similar to Caesar but with one more step: it is necessary to retrieve the length

of the key
● This can be done by retrieving repeated sequences in the ciphertext, since, if the repetition is

smaller than the secret key, repeated sequences in the ciphertext correspond to repeated
sequences in the plain text

● One way to automate this procedure is the following:
– Create letter groups of different sizes, these sizes are guess of the actual keysize
– For each size, measure the syntatic distance between some of the groups (Hamming or Edit, or Hamming

using bytes)
● Once the keysize is known, we simply return to the case of multiple Caesar ciphers: group the

symbols that have been shifted by the same letter, check their frequency and retrieve the actual
letter; alternatively, brute force the single letter of the key and check that the obtained plaintext
group has the letter frequency of English

 11

Classify if a piece of text is English

● ETAOIN SHRDLU: it is the approximate order of frequency of the
12 most commonly used letters in the English language

● In the past, it appeared on discarded lines of an articles, since
the letters on type-casting machine keyboards were arranged by
descending letter frequency to speed up the mechanical
operation of the machine

● If used to distinguish between plaintext and ciphertext, also the
number of spaces is a great indicator of text that is actually
written in English and not random bytes

 12

Introducing XOR ciphers

 13

Mapping between XOR and letters

● Caesar cipher: Single-byte XOR
– 1 Byte is used to XOR each Byte in the plaintext

● Vigenère cipher: Repeating-key XOR
– A sequence of <KEYSIZE> Bytes is used to XOR

<KEYSIZE> Bytes of plaintext at each iteration

 14

Even XOR can be broken

● Caesar cipher: Single-byte XOR
– Brute force can be used: just try all the 256 possible Bytes
– End the brute force procedure when something is English (use

ETAOIN SHRDLU)
● Vigenère cipher: Repeating-key XOR

– Find the KEYSIZE using the Hamming distance of Bytes
● Break each Byte in the secret key like it is a Single-Byte XOR

(ETAOIN SHRDLU)

 15

Back to the main track: NLP

● All the exposed techniques do not take into account the
semantic aspects of a term

● For this kind of approaches the sentences
– The apple is red
– The carpet is covered in red stains

are more similar than
– The cup is full of orange juice
– The glass is filled with a liquid made of oranges

 16

The basics: Word Embeddings

● Word embeddings: a technique where individual words are
transformed into a numerical representation of the word (a vector)

● The vector of a word tries to capture characteristics of that term,
such as definition and context

● BoW is a Word Embedding technique, but with several limitations:
– Does not convey actual information about the context
– Becomes larger depending on the size of the analyzed corpus of text

 17

Word2Vec

● Proposed in Efficient Estimation of Word
Representations in Vector Space, 2013 by a research
group of Google

● Goal of the paper: to introduce techniques that can be
used for learning high-quality word vectors from huge data
sets with billions of words

● General idea: based on a word occurrences in the text, it
is possible to estimate its meaning

 18

Word2Vec: visual representation

 19

Word2Vec: architecture

● Word2Vec has two possible implementations (both
are neural networks):
– Continuous Bag of Words (CBOW): the objective of

this model is to predict the probability of a word
appearing given the context

– Continuous Skip-Gram Model: the objective of this
model is to predict a context given the position of a word
in a sentence

 20

Word2Vec: CBoW

 21

Word2Vec: CBoW

● Input layer: multiple 1-hot vectors where the 1 corresponds to
the word in our text corpus that occupies the position
corresponding to the vector

● Output layer: 1-hot vector where the 1 corresponds to the
word in our text corpus for which we are learning the word
embeddings

● Hidden layer: vector of weights from the context. It is what we
are trying to learn and what will be actually stored as a vector

 22

Word2Vec: Continuous Skip-Gram

 23

Word2Vec: Continuous Skip-Gram

● Input layer: 1-hot vector where the 1 corresponds to the word
in our text corpus for which we are learning the word
embeddings

● Output layer: multiple 1-hot vectors where the 1 corresponds
to the word in our text corpus that occupies the position
corresponding to the vector

● Hidden layer: vector of weights from the context. It is what we
are trying to learn and what will be actually stored as a vector

 24

Word2Vec: the right terminology

● These kind of neural networks is usally referred as
Autoencoders

● Their objective is to try to learn a compressed representation
of an input

● Usually the hidden layer of a neural networks have a larger
dimension compared to the input layer

● As seen for the two previous architectures, this is not the case
for autoencoders

 25

Word2Vec: advantages

● Both previously mentioned problem have been solved:
– It is not necessary to store the entire text corpus and obtain

only 1-hot vectors → only the hidden layers are now necessary
– The vectors are able to capture part of the semantics of a term
– Once a term has been encoded through word embeddings, it is

possible to do any operation on it (e.g., feed it into classifiers,
check synonyms, check for equality...)

 26

Word2Vec: which is better

● The original paper reports the following:
– Skip-Gram works well with small datasets, and can

better represent less frequent words
– CBOW is found to train faster than Skip-Gram, and

can better represent more frequent words

 27

Word2Vec: which is better

● The original paper reports the following:
– Skip-Gram works well with small datasets, and can

better represent less frequent words
– CBOW is found to train faster than Skip-Gram, and

can better represent more frequent words

 28

Word2Vec: evaluate similarity

● The most simple method to evaluate the
similarity between word embeddings is Cosine
similarity

 29

Word2Vec: limitations

● A word to be evaluated must be in the training
dataset → rare words may be unknown to the
model

● Polysemy: a word may have multiple meanings
based on the context (should correspond to
multiple vectors at the same time)

 30

Word2Vec: solutions

● fastText: is able to handle out of vocabulary
terms, since it is based on n-grams instead of
full words

● ELMo: takes into account the whole sentence to
produce the embedding at runtime → but this IS
NOT WORD EMBEDDING

 31

Introducing Sentence Embeddings

● Usually, the meaning of an entire sentence can not
be expressed through a single word

● A naive way to obtain sentence embeddings from
word embeddings would be to sum or average each
of the components in the phrase

● This, in the space of the word embeddings, simply
summarize the entire sentence as a single word

 32

Existing models for Sentence Embeddings

● ELMo: learns word embeddings on the fly and
based on them generates sentence embeddings

● InferSent: word embeddings are not used, what is
produced in directly the sentence embeddings

● Sentence-BERT: state of the art model, but very
big and very slow (65 hours for 10,000 sentences)

 33

The final push: language barriers

● Usually, both word embeddings and sentence
embeddings are trained on a text corpus of a
single language

● Using embeddings of a different language
would be of no use (same word but context
never seen)

 34

The final push: possible solutions

● Naive: train only one language, translate all the languages into the
central one and use its embeddings

● Align different spaces: some terms are general and easy to
translate (animale→ animal, linguaggio→ language). Learning how
to align these couples of vectors should leadt to the alignment of
the entire space of the embeddings

● Both of these methos are not able to handle expression that are
meaningful only for a specific language and lead to bad
translations: Once in a blue moon → Una volta in una luna blu

 35

The final push: state-of-the-art models

● These two methods are able to learn language
agnostic embeddings through parallel
sentences provided in the training set:
– LASER: Language-Agnostic Sentence

Representations
– m-USE: Multilingual Universal Sentence Encoder

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

