ADVANCED DATA MANAGEMENT

Gianluca Oldani – Tutoring 4

What will be discussed today

- Refresh K-Anonymity + L-Diversity
- The Mondrian algorithm (theory + Spark impl)
- Distributed Job Scheduling

• Problem statement:

Given person-specific field-structured data, produce a release of the data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful

• Property to enforce:

the information for each person contained in the release cannot be distinguished from at least **k-1** individuals whose information also appear in the release

Is this dataset k-anonymous for k = 2?

SSN	Name	Race	Date of birth	Sex	ZIP	Marital status	Disease
		asian	64/04/12	F	94142	divorced	hypertension
		asian	64/09/13	F	94141	divorced	obesity
		asian	64/04/15	F	94139	married	chest pain
		asian	63/03/13	Μ	94139	married	obesity
		asian	63/03/18	Μ	94139	married	short breath
		black	64/09/27	F	94138	single	short breath
		black	64/09/27	F	94139	single	obesity
		white	64/09/27	F	94139	single	chest pain
		white	64/09/27	F	94141	widow	short breath

The previous question is not meaningful, since it is not specified what parts of the table has to be 2-anonymous

SSN	Name	Race	Date of birth	Sex	ZIP	Marital status	Disease
		asian	64/04/12	F	94142	divorced	hypertension
		asian	64/09/13	F	94141	divorced	obesity
		asian	64/04/15	F	94139	married	chest pain
		asian	63/03/13	Μ	94139	married	obesity
		asian	63/03/18	Μ	94139	married	short breath
		black	64/09/27	F	94138	single	short breath
		black	64/09/27	F	94139	single	obesity
		white	64/09/27	F	94139	single	chest pain
		white	64/09/27	F	94141	widow	short breath

The attributes that can be used by an attacker to performa a linkage attack are calles **quasi-identifiers**

Why such a model is necessary?

• Popular concerns:

- Netflix published data about movie rankings for 500,000 customers in 2007, and researchers showed they could de-anonymize the data using a few additional inputs from IMDb
- Using 1990 U.S. census data, Stanford researchers showed that they could uniquely identify **87 percent** of the U.S. population using only their Zip code, gender, and date of birth
- AOL published search data for 650,000 users in 2007, thinking it was enough to anonymize their name using a unique ID. Unfortunately, most users often query their own name. As a result, their CTO resigned and an entire research team was fired after the public outcry

How to achieve K-Anonymity

- Suppression: remove the tuple from the dataset
- Generalization:substituting the values of a given attribute with more general values

Introducing L-Diversity

- Some attributes can be valuable as much as identifiers
- K-Anonymity does not enforce any constraint on the cardinality of the set of values in a group of K individuals

Introducing L-Diversity

	Ν	Non-Sen	Sensitive	
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

The Mondrian algorithm

- Greedy approach to enforce K-Anonymity + L-Diversity
- More efficient than the optimal single attribute approach (nLog(n) vs exp(n))
- Reported to produce better results in the multidimensional scenario

The Mondrian algorithm

```
Anonymize(partition)
if (no allowable multidimensional cut for partition)
 return \phi : partition \rightarrow summary
else
 dim \leftarrow choose_dimension()
 fs \leftarrow \text{frequency\_set}(partition, dim)
 splitVal \leftarrow find\_median(fs)
 lhs \leftarrow \{t \in partition : t.dim \leq splitVal\}
 rhs \leftarrow \{t \in partition : t.dim > splitVal\}
 return Anonymize(rhs) \cup Anonymize(lhs)
```

 Strict version: Ihs and rhs have no values in common

Lesson learned: visualization is important

13

Mondrian components

- choose_dimension() \rightarrow normalized span
- frequency_set() → scan
- find_median() \rightarrow sort and filter
- hidden => check partition validity \rightarrow scan

<u>Reality check – Problems of Mondrian</u>

- choose_dimension() \rightarrow O(M * N)
- frequency_set() \rightarrow O(N)
- find_median() \rightarrow O(FLog(F))
- hidden => check partition validity \rightarrow O(1) for K-Anonymity, O(K*N) for L-Diversity
- N = tuples in the partition F = # unique values
- M = # of quasi-identifiers K = # of sensitive attributes

<u>Reality check – Problems of Mondrian</u>

- choose_dimension() \rightarrow A lot of quasi-identifiers?
- frequency_set() → Large datasets?
- find_median() \rightarrow F \rightarrow N ?

• What about attributes without order?

Spark to the rescue

DEMO TIME!

Repository link: https://github.com/mosaicrown/mondrian Papers links:

https://spdp.di.unimi.it/papers/percom2021.pdf

https://spdp.di.unimi.it/papers/percom2021-artifact.pdf

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb er=9894678

Job Scheduling – Final push for today

- Problem of normal job scheduling?
- Problem of job scheduling over a cluster?
- Any idea for the architecture to use?