ADVANCED DATA MANAGEMENT

Gianluca Oldani - Tutoring 4

What will be discussed today

- Refresh K-Anonymity + L-Diversity
- The Mondrian algorithm (theory + Spark impl)
- Distributed Job Scheduling

What is K-Anonymity

- Problem statement:

Given person-specific field-structured data, produce a release of the data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful

What is K-Anonymity

- Property to enforce: the information for each person contained in the release cannot be distinguished from at least k- 1 individuals whose information also appear in the release

What is K-Anonymity

Is this dataset k-anonymous for $\mathrm{k}=2$?

| SSN Name | Race | Date of birth | Sex | ZIP | | Marital status |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | Disease

What is K-Anonymity

The previous question is not meaningful, since it is not specified what parts of the table has to be 2-anonymous

The attributes that can be used by an attacker to performa a linkage attack are calles quasi-identifiers

Why such a model is necessary?

- Popular concerns:
- Netflix published data about movie rankings for 500,000 customers in 2007, and researchers showed they could de-anonymize the data using a few additional inputs from IMDb
- Using 1990 U.S. census data, Stanford researchers showed that they could uniquely identify 87 percent of the U.S. population using only their Zip code, gender, and date of birth
- AOL published search data for 650,000 users in 2007, thinking it was enough to anonymize their name using a unique ID. Unfortunately, most users often query their own name. As a result, their CTO resigned and an entire research team was fired after the public outcry

How to achieve K-Anonymity

- Suppression: remove the tuple from the dataset
- Generalization:substituting the values of a given attribute with more general values

Introducing L-Diversity

- Some attributes can be valuable as much as identifiers
- K-Anonymity does not enforce any constraint on the cardinality of the set of values in a group of K individuals

Introducing L-Diversity

	Non-Sensitive			Sensitive
	Zip Code	Age	Nationality	Condition
1	$130^{* *}$	<30	$*$	Heart Disease
2	$130^{* *}$	<30	$*$	Heart Disease
3	$130^{* *}$	<30	$*$	Viral Infection
4	$130^{* *}$	<30	$*$	Viral Infection
5	1485^{*}	≥ 40	$*$	Cancer
6	1485^{*}	≥ 40	$*$	Heart Disease
7	1485^{*}	≥ 40	$*$	Viral Infection
8	1485^{*}	≥ 40	$*$	Viral Infection
9	$130^{* *}$	$3 *$	$*$	Cancer
10	$130^{* *}$	$3 *$	$*$	Cancer
11	$130^{* *}$	$3 *$	$*$	Cancer
12	$130^{* *}$	$3 *$	$*$	Cancer

The Mondrian algorithm

- Greedy approach to enforce K-Anonymity + LDiversity
- More efficient than the optimal single attribute approach ($\mathrm{nLog}(\mathrm{n})$ vs $\exp (\mathrm{n})$)
- Reported to produce better results in the multidimensional scenario

The Mondrian algorithm

```
Anonymize(partition)
if (no allowable multidimensional cut for partition)
    return \phi : partition }->\mathrm{ summary
else
    dim}\leftarrow\mathrm{ choose_dimension()
    fs}\leftarrow\mathrm{ frequency_set(partition,dim)
    splitVal }\leftarrow\mathrm{ find_median(fs)
    lhs}\leftarrow{t\in\mathrm{ partition :t.dim }\leq\mathrm{ splitVal }
    rhs}\leftarrow{t\in\mathrm{ partition:t.dim > splitVal }
    return Anonymize(rhs)\cup Anonymize(lhs)
```

- Strict version: Ihs and rhs have no values in common

Lesson learned: visualization is important

Mondrian components

- choose_dimension() \rightarrow normalized span
- frequency_set() \rightarrow scan
- find_median() \rightarrow sort and filter
- hidden $=>$ check partition validity \rightarrow scan

Reality check - Problems of Mondrian

- choose_dimension() $\rightarrow \mathrm{O}(\mathrm{M}$ * N$)$
- frequency_set() $\rightarrow \mathrm{O}(\mathrm{N})$
- find_median() $\rightarrow \mathrm{O}(F \log (F))$
- hidden => check partition validity $\rightarrow \mathrm{O}(1)$ for KAnonymity, $\mathrm{O}(\mathrm{K} * \mathrm{~N})$ for L-Diversity
- $\mathrm{N}=$ tuples in the partition • $\mathrm{F}=\#$ unique values
- $\mathrm{M}=\#$ of quasi-identifiers •K = \# of sensitive attributes

Reality check - Problems of Mondrian

- choose_dimension() \rightarrow A lot of quasi-identifiers?
- frequency_set() \rightarrow Large datasets?
- find_median() $\rightarrow \mathrm{F} \rightarrow \mathrm{N}$?
- What about attributes without order?

Spark to the rescue

DEMO TIME!

Repository link: https://github.com/mosaicrown/mondrian Papers links:
https://spdp.di.unimi.it/papers/percom2021.pdf
https://spdp.di.unimi.it/papers/percom2021-artifact.pdf https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumb er=9894678

Job Scheduling - Final push for today

- Problem of normal job scheduling?
- Problem of job scheduling over a cluster?
- Any idea for the architecture to use?

